Catalytic Degradation of Dichloroethane Using Cu Nanoparticles Under Reducing Conditions

نویسندگان

  • Shin-Mu Tsai
  • Hsing-Lung Lien
چکیده

Dichloroethane is a raw material used for the manufacture of vinyl chloride monomer (VCM) and therefore has very often been detected as a contaminant in the groundwater nearby the VCM manufacturing plant. Zero-valent iron is capable of degrading a wide array of chlorinated contaminants in groundwater such as trichloroethylene, vinyl chloride, carbon tetrachloride, and tetrachloroethane. However, it has no reaction with dichloroethane, which has been categorized as a very recalcitrant groundwater contaminant. In this study, zero-valent copper nanoparticles have been synthesized for effective dechlorination of 1,2-dichloroethane under reducing conditions. Cu nanoparticles have the surface areas of about 19.0 m/g and an average diameter of 70 nm. Batch experiments were conducted to test the effectiveness of Cu nanoparticles for 1,2-dichloroethane degradation using sodium borohydride as electron donors where the ORP was measured at -1000 mV. It was found that more than 80% of 1,2-dichloroethane (initial concentration of 30 mg/L) was rapidly degraded within 2 hours in the presence of both Cu nanoparticles (2.5 g/L) and NaBH4 (1 g/L). No reaction was observed when the system contained either Cu nanoparticles alone or NaBH4 alone. The degradation intermediates included ethane and ethylene accounting for 79% and ~1.5% of the 1,2-dichloroethane lost, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green synthesis, characterization, and photo catalytic degradation efficiency of Trimanganese Tetroxide nanoparticle

Mn3O4 nanoparticles has been synthesised from Manganese (II) acetate and Simarouba Glauca leaf extract using microwave heating. This novel method of synthesis of Mn3O4 is fast, low-cost, non-toxic and environment friendly. The synthesised product was characterised by powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy( FT-IR), Ultraviolet-Visible spectroscopy( UV-Visible), X-r...

متن کامل

Photocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution

Background & Aim: Excessive consumption of antibiotics and their incomplete metabolization in human and animals, as well as inadequate removal by conventional waste water system leads to the release of these chemicals into the environment. Antibiotics have adverse effects including bacterial resistance, digestive disorders and genotoxic. Therefore the aim of this study was to survey amoxicillin...

متن کامل

Green Synthesis and Characterization of Ni-Cu-Mg Ferrite Nanoparticles in the Presence of Tragacanth Gum and Study of Their Catalytic Activity in the Synthesis of Hexanitrohexaazaisowurtzitane

Here, we report the synthesis, characterization, and catalytic evaluation of Ni-Cu-Mg ferrite using tragacanth gum as biotemplate and Metals nitrate as the metal source by the sol-gel method without using any organic chemicals. The sample was characterized by powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Vibrating Sample Magnetometer (VSM), and Scanning El...

متن کامل

Solar Photocatalytic Degradation of Diclofenac by N-Doped TiO2 Nanoparticles Synthesized by Ultrasound

Anatase N-doped TiO2 nanoparticles were synthesized using ultrasound at low frequency and room temperature. The samples characterized by techniques including XRD, TEM, HRTEM, FT-IR, XPS, and UV–Vis spectroscopy. XPS indicated the existence of nitrogen as an anion dopant within the TiO2 lattice. The solar photocatalytic activity of N-doped TiO2 studied for th...

متن کامل

One-pot three-component synthesis of tetrahydrobenzo[b]pyrans in the presence of Ni0.5Cu0.5Fe2O4 magnetic nanoparticles under microwave irradiation in solvent-free conditions

Ni0.5Cu0.5Fe2O4 magnetic nanoparticles using Arabic gel (AG) as a reducing and stabilizing agent was prepared by the sol-method. The catalyst identification was performed using Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The magnetic anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009